Large-Scale Analysis of Peptide Sequence Variants: The Case for High-Field Asymmetric Waveform Ion Mobility Spectrometry

نویسندگان

  • Andrew J. Creese
  • Jade Smart
  • Helen J. Cooper
چکیده

Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers. The resulting tandem mass spectra are composite, containing fragments from multiple precursor ions. The benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for proteomics have been demonstrated by a number of groups, but previously work has focused on extending proteome coverage generally. Here, we present a systematic study of the benefits of FAIMS for a key challenge in proteomics, that of peptide isomers. We have applied FAIMS to the analysis of a phosphopeptide library comprising the sequences GPSGXVpSXAQLX(K/R) and SXPFKXpSPLXFG(K/R), where X = ADEFGLSTVY. The library has defined limits enabling us to make valid conclusions regarding FAIMS performance. The library contains numerous sequence inversions and structural isomers. In addition, there are large numbers of theoretical localization variants, allowing false localization rates to be determined. The FAIMS approach is compared with reversed-phase liquid chromatography and strong cation exchange chromatography. The FAIMS approach identified 35% of the peptide library, whereas LC-MS/MS alone identified 8% and LC-MS/MS with strong cation exchange chromatography prefractionation identified 17.3% of the library.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis.

Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion tra...

متن کامل

Separation of cis and trans Isomers of Polyproline by FAIMS Mass Spectrometry

High field asymmetric waveform ion mobility spectrometry (FAIMS) is well-established as a tool for separating peptide isomers (sequence inversions and post-translationally modified localization variants). Here, we demonstrate the FAIMS is able to differentiate cis and trans isomers of polyproline. Polyproline assumes an all-cis conformation-the PPI helix-in 1-propanol, and an all-trans conforma...

متن کامل

Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.

Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion sour...

متن کامل

Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.

Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the wor...

متن کامل

Separation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry.

One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2013